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a b s t r a c t 

In this paper, we propose a novel method for mild cognitive impairment detection based on jointly ex- 

ploiting the complex network and the neural network paradigm. In particular, the method is based on 

ensembling different brain structural “perspectives” with artificial neural networks. On one hand, these 

perspectives are obtained with complex network measures tailored to describe the altered brain con- 

nectivity. In turn, the brain reconstruction is obtained by combining diffusion-weighted imaging (DWI) 

data to tractography algorithms. On the other hand, artificial neural networks provide a means to learn 

a mapping from topological properties of the brain to the presence or absence of cognitive decline. The 

effectiveness of the method is studied on a well-known benchmark data set in order to evaluate if it can 

provide an automatic tool to support the early disease diagnosis. Also, the effects of balancing issues are 

investigated to further assess the reliability of the complex network approach to DWI data. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

Mild cognitive impairment (MCI) is a non-disabling disorder

characterized by an early state of abnormal cognitive function

[17] . An individual with MCI shows measurable changes in think-

ing skills—usually noticed by family members and friends—, which

however do not affect the ability to carry out daily life activi-

ties. Nevertheless, according to some studies reported in literature,

e.g. [32,33] , people with MCI are at a higher risk of developing

Alzheimer’s disease (AD), or other kinds of dementia, than people

without MCI. Research is ongoing to identify and validate useful

biomarkers that might indicate the risk of decline [19] . These may

be used to support the early disease diagnosis and testing of novel

treatments. Unfortunately, despite the large number of promising

results, biological markers of MCI are at various stages of develop-

ment and their use within standard clinical routines has not yet

been established. 

Advances in this research have been obtained, in the last few

years, in neuroimaging, particularly with diffusion-weighted imag-

ing (DWI). DWI measures the water diffusion along the white

matter (WM) fibers, thus it can provide meaningful information
∗ Corresponding author. 
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egarding their integrity [2] . This information can highlight WM

icro-structural changes that are related to neurodegeneration. In

ddition, when combined with tractography algorithms, DWI en-

bles the reconstruction of the WM fiber tracts, providing a charac-

erization of the physical connections of the brain that can be sub-

equently investigated through a complex network-based approach,

.g. [12] . In fact, the human brain can be modeled as a network the

odes of which are the anatomical regions, while edges represent

he fiber tracts connecting them. 

A recently proposed approach to study the diagnostic potentials

f complex network measures consists in feeding these measures

nto supervised machine learning algorithms to automatize the dis-

ase detection, e.g., [6,11,22] . Developing a computerized decision

upport tool is desirable as it can provide a complementary ap-

roach to the standard evaluations which is non-invasive and low-

ost. However, while models with very high prediction accuracy

n detecting late-stage AD have been developed so far, the binary

iscrimination healthy/MCI is still hard. MCI, in fact, seems to be

haracterized by very minimal variations which makes it difficult

o find meaningful patterns for distinguishing this state from nor-

al aging. Furthermore, several existing works on this problem

sed either private data, e.g. [6,34] , or benchmark data with a dis-

roportion of the MCI group compared to the control group, e.g.

16,18] . In the first case, the experimentation is not reproducible.

n the second case, since machine learning algorithms are known

https://doi.org/10.1016/j.patrec.2020.06.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2020.06.001&domain=pdf
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o prefer the majority class when data are unbalanced, estimating

ensitivity and specificity values may be biased by this factor. 

The contribution of this paper is two-fold. On one hand, we

ropose a novel classification strategy for the binary discrimina-

ion healthy/MCI. Starting from the observation that different com-

lex network measures may provide different “perspectives” of the

ame networks under study, i.e. they carry on non-redundant in-

ormation, we develop an ensemble model based on artificial neu-

al networks each trained on different complex network features.

nsemble models are typically based on different classifiers which

earn to predict the target output based on the same input. In the

roposed method, instead, the ensemble is based on copies of the

ame classifier fed with different inputs. On the other hand, this

aper contributes by investigating the effects on classification per-

ormance of balancing the two groups under investigation. To this

nd, some well-known under-sampling approaches are employed.

o our best knowledge, this is the first attempt to study the im-

act of balancing issues to evaluate the reliability of the complex

etwork approach to DWI data. 

. Materials 

Data used in the preparation of this article were obtained from

he Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

 www.adni.loni.usc.edu ). The ADNI was launched in 2003 as a

ublic-private partnership, led by Principal Investigator Michael W.

einer, MD. The primary goal of ADNI has been to test whether

erial magnetic resonance imaging, positron emission tomography,

ther biological markers, and clinical and neuropsychological as-

essment can be combined to measure the progression of MCI and

arly AD. For up-to-date information, see www.adni-info.org . 

In particular, we used an unbalanced cohort of 108 MCI patients

nd 49 healthy control (HC) subjects. Control subjects did not show

igns of depression, MCI or dementia; MCI patients reported a sub-

ective memory concern, but without any significant impairment in

ther cognitive domains: they preserved daily life activities with

o sign of dementia. Scans were acquired using a 3-T GE Medical

ystems scanner; more precisely, 46 separate images were acquired

or each scan: 5 with negligible diffusion effects ( b 0 images) and 41

iffusion-weighted images ( b = 10 0 0 s/mm 

2 ). For each subject, the

1 anatomical scan has also been used to perform tractography. 

All procedures followed were in accordance with the ethical

tandards of the responsible committee on human experimenta-

ion (institutional and national) and with the Helsinki Declaration

f 1975 and its later amendments. The ADNI project was approved

y the Institutional Review Boards of all participating institutions

nd informed consent was obtained from all patients for being in-

luded in the study. 

. Methods 

The analysis we carried out is described in the following sub-

ections. 

.1. Image processing 

Image processing consisted in the reconstruction of the brain

onnectome from the DWI scans. For each subject, the DICOM im-

ges were acquired from ADNI and the dcm2nii tool, provided

ith the MRIcron suite ( https://www.nitrc.org/projects/mricron ),

as used to convert them into the NIFTI format. The NIFTI images

ere then re-organized in the standard BIDS format. 

The subsequent processing steps, from image preprocessing to

o-registration and structural connectome generation, were per-

ormed using tools provided by the FSL FMRIB Software Library
FSL) ( https://fsl.fmrib.ox.ac.uk/fsl/fslwiki ) and the MRtrix3 soft-

are package ( https://www.mrtrix.org/ ). The main steps, which are

ell-established in the literature, are shown in Fig. 1 . First, a de-

oising step was performed to enhance the signal-to-noise ratio of

he diffusion weighted signals so as to reduce the thermal noise.

his noise is due to the stochastic thermal motion of the wa-

er molecules and their interaction with the surrounding micro-

tructure [31] . Head motion and eddy current distortions were cor-

ected by aligning the DWI images of each subject to the average

 0 image. Then, the brain extraction tool (BET) was used for the

kull-stripping of the brain [27] . The bias-field correction was used

o correct all DWI volumes. Similarly, the T1 weighted scans were

rocessed by performing the following steps: reorientation to the

tandard image MNI152, automatic cropping, bias-field correction,

egistration to the linear and nonlinear standard space and brain

xtraction. The next step was the inter-modal registration of the

iffusion-weighted and T1 weighted images. 

After preprocessing and co-registration, the structural connec-

ome was generated. First, we generated a tissue-segmented im-

ge tailored to the anatomically constrained tractography [35] .

hen, we performed an unsupervised estimation of WM, gray

atter and cerebro-spinal fluid. In the next step, the fiber ori-

ntation distributions for spherical deconvolution was estimated

9] . We then performed a probabilistic tractography [30] using

ynamic seeding [26] and anatomically-constrained tractography

24] , which improves the tractography reconstruction by using

natomical information through a dynamic thresholding strategy.

e applied the spherical-deconvolution informed filtering of trac-

ograms (SIFT2) methodology [26] , which not only provides more

iologically meaningful estimates of the structural connection den-

ity, but also a more efficient quantification of the streamlines con-

ectivity. The obtained streamlines were mapped through a T1

arcellation scheme by using the AAL2 atlas [20] , which is a re-

ised version of the automated anatomical atlas (AAL) including

20 regions. Finally, a robust structural connectome construction

as performed for generating the connectivity matrices [25] . The

ipeline here described has also been used in recent structural

onnectivity studies, for example [1] and [29] . 

The final output was a 120 × 120 weighted symmetric connec-

ivity matrix W for each subject, the entries w ij of which corre-

ponded to the number of fiber tracts connecting the anatomical

egion i to region j in accordance with the AAL2 atlas. 

.2. Complex network features 

The connectivity matrix W represents the structural complexity

f the brain. From W several graph measures can be computed to

escribe its topological properties. In this work, we consider three

easures, namely the original weight information resulting from

he application of tractography, shortest path length and weighted

ommunicability. For each node pair ij , the shortest path length

s simply the length of the shortest path from i to j . It provides

 different information from weights as it expresses the efficiency

f the information flow. Analogously, communicability, firstly in-

roduced by Estrada and Hatano [7] , then refined by Crofts and

igham [3] in the weighted case, is defined as: 

 i j = 

(
exp 

(
D 

−1 / 2 W D 

−1 / 2 
))

i j 
, 

here D ∈ R 

N×N is the diagonal strength matrix with N the num-

er of nodes. This network metric provides an even more general

easure of the ease of communication inside the network, as it

akes into account not only the shortest paths but all available

outes connecting two nodes. Its usefulness in assessing the altered

rain connectivity due to AD has been observed in recent works

10,11] . 

http://www.adni.loni.usc.edu
http://www.adni-info.org
https://www.nitrc.org/projects/mricron
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://www.mrtrix.org
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Fig. 1. Image processing pipeline. DWI and T1 scans underwent several processing steps to obtain a weight connectivity matrix W as final output [ 36 ]. 
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3.3. Model fitting 

Similar or conceptually different classification models can be

combined through a voting scheme, so that the individual weak-

nesses of each classifier are mitigated [28] . Different models

trained independently, in fact, can look at slightly different aspects

of the data, so having a chance to improve the predictions provided

by each individual model in the ensemble. In particular, since dif-

ferent complex network measures are likely to provide different

“perspectives” of the same networks under study, i.e. they carry

on non-redundant information, the ensemble of these features can

take advantage of this diversification. In the present research, we

developed an ensemble model based on the three different com-

plex network features previously described: weights; shortest path

length and communicability. As voting scheme, we used a soft vot-

ing, which is based on averaging the probability scores given by

the individual classifiers. Soft voting is usually preferred to hard

voting (which is based on a simple majority voting rule), as it takes

into account more information than only the binary prediction, i.e.

the classifiers’ uncertainty on the final decision they take. 

As base learners, we used Multi-layer Perceptrons (MLPs) shar-

ing the same hyper-parameters. Briefly speaking, an MLP is a feed-

forward artificial neural network that can learn a nonlinear func-

tion approximator either for classification or regression [15] . In

contrast to traditional logistic regression, which is based on a sin-

gle weighted linear combination between the input layer and the

output layer, an MLP provides one or more nonlinear ( hidden ) lay-

ers. In the present paper, we used an MLP with two hidden layers,

32 hidden units each; whereas, as activation function, we used the

commonly used ReLU. Employing many more hidden layers would

have had a negative impact on classification performance, given

the disproportionately higher number of parameters to be opti-

mized with respect to the number of training samples. Since the

classification task is binary, the output layer performs a sigmoid

activation: 

sigmoid(x ) = 

1 

1 + e −x 
, 

where x is the feature vector from the preceding hidden layer. The

network attempts to minimize a classic cross-entropy loss func-

tion: 

H(θ ) = 

N ∑ 

i =1 

y i log (h θ (x i )) + (1 − y i ) log (1 − h θ (x i )) , 

where θ collectively indicates the parameters of the model, N is

the number of samples, and y i and h θ ( x i ) are the true and the

predicted class label, respectively, for sample x . The network opti-
i 
izes H(θ ) via backpropagation using the Limited-memory BFGS

lgorithm. This is an optimization algorithm in the family of quasi-

ewton methods which is known to perform well when, as in our

ase, the data set is small [14] . It is worth noting that, since the

ehavior of the neural network can be heavily influenced by dif-

erent feature scales, features were normalized in the range [0, 1]

efore training. 

We chose MLPs over other state-of-the-art classification algo-

ithms mainly for two reasons. First, the use of nonlinearities

ithin layers empowers the network with the capability of ex-

loiting nonlinear relationships between data. Second, each layer

an be equipped with a regularization term—the � 2 penalty in

ur case—which can help mitigate overfitting in presence of high-

imensional and possibly redundant features [15] . The usefulness

f neural network models in the clinical domain has been con-

rmed in several works, e.g. [21] and [4] . An overall scheme of the

roposed method is depicted in Fig. 2 . 

.4. Balancing strategies 

Most of machine learning methods are affected by the prob-

em of having unbalanced data. As the imbalance increases, the

lassification models tend to favor the correct prediction of the in-

tances in the over-represented class. In a diagnostic problem, this

ay bias a reliable estimate of the system’s accuracy, as a higher

umber of samples in the pathological (or control) group may re-

ult in an overoptimistic estimate of sensitivity (or specificity). This

s an acknowledged issue in the machine learning community, e.g.

8] , and strategies to mitigate its effects for diagnostic purposes are

ometimes adopted, e.g. [5] and [ 37 ]. 

In order to mitigate this issue, we employed three under-

ampling approaches: 

• Random under-sampling : this is the most naïve and easy way to

under-sample the majority class. A subset sample of the over-

represented class is selected randomly, then it is removed from

the data set; 
• Near miss-3 : this belongs to the “near miss” family [13] of

methods which implements heuristics based on the k -nearest

neighbors algorithm. The method proceeds in two steps: first,

for each sample in the minority class, its k nearest neighbors

are detected; then, the examples in the majority class retained

are the ones for which the average distance to the k nearest

neighbors is the largest. We set k = 3 . Near miss-3 is known to

be less susceptible to noise than the other variants; 
• Instance hardness threshold : with this method, the MLP was

trained and the subjects from the majority class for which
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Fig. 2. Proposed classification ensemble. The three complex network features are flattened and given as an input to three artificial neural networks sharing the same 

hyper-parameters. The final prediction is obtained as a soft voting of the individual classifiers’ prediction. (Abbreviations: W = weights; S = shortest path length; W = 

communicability; HC = healthy controls; MCI = mild cognitive impairment). 

 

 

 

j  

o  

c

4

 

a  

a

 

 

 

 

 

 

b  

M

 

p  

t  

n  

m  

t  

l  

t  

g  

p  

a

 

c  

v  

a  

s  

i  

w

 

u  

p

4

 

d  

o  

p  

t  

a  

t  

s  

s  

W  

F  

=
 

p  

e  

T  

t

4

 

m  
the model returned the lower probability scores, i.e. those for

which the model was less confident on the label to be assigned,

were removed [23] . 

While random under-sampling does not use any criterion to ad-

ust the class distribution, near miss and instance hardness thresh-

ld focus on the data points that may be harder to classify. This

an introduce a bias which may lead to overoptimistic results. 

. Experimental results 

In this Section, we report the obtained results. As a baseline

gainst which to compare the proposed method, we employed two

pproaches: 

• The first baseline consisted in evaluating the predictive accu-

racy of the individual features when separately fed to the neu-

ral network model; 
• The second baseline was based on combining the three feature

vectors into a single high-dimensional vector fed to the neural

network. This strategy represents a typical complementary ap-

proach to that based on the ensemble. 

For a fair comparison, the classification models used for the

aseline experiments shared the same hyper-parameters of the

LP architecture used in the proposed ensemble. 

Since the set of data is small, we validated the classification

erformance through a 10-fold cross-validation. With this scheme,

he set of data is partitioned into ten disjoint folds from which

ine folds are used to train the learning algorithm, while the re-

aining fold is used to test it. This computation is iterated ten

imes, until each fold has been used as a test set once. In particu-

ar, we employed a stratified cross-validation, so that each fold con-

ained roughly the same number of subjects from each diagnostic

roup. The entire procedure was repeated ten times, with different

ermutations of the training and test samples, for a better gener-

lization of the performance. 
As classification metrics, we used: accuracy; area under the ROC

urve (AUC); sensitivity; specificity and F-1. We report the mean

alues of these metrics, averaged over all the cross-validation iter-

tions. Also the standard errors are reported. In a clinical setting,

ensitivity is one of the most important metrics to be monitored as

t expresses the capability of the diagnostic tool to rule in disease

hen resulting in a positive response. 

In the following, both the results obtained with the original

nbalanced data and those obtained after under-sampling are re-

orted. 

.1. Original unbalanced data 

Fig. 3 shows the results obtained on the original unbalanced

ata (49 HC vs. 108 MCI). It can be observed that the performance

f the individual features are quite comparable. As expected, the

roposed ensemble generally improved upon the performance of

he individual features, achieving a sensitivity of 0.81 ± 0.01 and

n F-1 of 0.75 ± 0.01. The fusion of features, instead, provided lit-

le or no improvement over the single network measures. The sen-

itivity obtained with the ensemble was found to be statistically

ignificant different from the other classification strategies (Mann-

hitney U test at the significance level 0.01). The same applies to

-1, except for the comparison with the fusion of features ( p -value

 0 . 014 ). 

In general, very low values of specificity were obtained. As ex-

ected, this suggests that all classification models exhibited a pref-

rence for a more accurate prediction of the pathological group.

his is confirmed by the lower values of AUC compared to sensi-

ivity. 

.2. Balanced data 

In Fig. 4 , the results obtained after randomly re-sampling the

ajority class are shown. An overall performance decrease can
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Fig. 3. Classification performance on the unbalanced data. (Abbreviations: W = 

weights; S = shortest path length; W = communicability). 

Fig. 4. Classification performance after random under-sampling. (Abbreviations: W 

= weights; S = shortest path length; W = communicability). 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Classification performance after near miss under-sampling. (Abbreviations: 

W = weights; S = shortest path length; W = communicability). 

Fig. 6. Classification performance after instance hardness threshold under- 

sampling. (Abbreviations: W = weights; S = shortest path length; W = commu- 

nicability). 
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be observed. The best results were obtained by communicability

(sensitivity = 0 . 67 ± 0 . 02 ) and the ensemble (AUC = 0 . 67 ± 0 . 02 ).

These values were statistically significant different from the other

classification strategies (Mann-Whitney U test at the significance

level 0.05). Interestingly, shortest path length, communicability and

the ensemble of features exhibited a sensitivity higher than speci-

ficity. This trend was reversed in the case of weights and the fusion

of features. 

When near miss under-sampling was used, some metrics

slightly improved with respect to random under-sampling. Once

again, communicability provided the best sensitivity over the other
ndividual features (i.e., a mean value of 0.69 ± 0.02). The ensem-

le and the fusion of features show similar accuracy and AUC;

hereas, concerning the other metrics, a significantly ( p -value =
 . 009 ) higher sensitivity was achieved by the fusion of features

i.e., a mean value of 0.73 ± 0.02) ( Fig. 5 ). 

Finally, instance hardness threshold under-sampling provided

n overall improvement over the other re-sampling techniques.

his was expected, as this technique removes the data points that

re harder to classify. Among the individual features, shortest path

ength and communicability provided the best results, with com-

unicability achieving a sensitivity of 0.76 ± 0.02. The overall best
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erformance, instead, were obtained by the fusion of features (i.e.,

 mean AUC of 0.81 ± 0.01 and a mean sensitivity of 0.78 ± 0.02).

hese performance were statistically significant different from the

ther classification strategies (Mann-Whitney U test at the signif-

cance level 0.01), except for sensitivity in the comparison with

ommunicability ( p -value = 0 . 102 ) and specificity in the compar-

son with weights ( p -value = 0 . 032 ) ( Fig. 6 ). 

For all the three balanced data sets, although with performance

ower compared to the unbalanced data, all classification strate-

ies were almost always better in detecting the pathological condi-

ion in the pathological group. This highlights the robustness of the

omplex network approach in combination with the neural net-

ork paradigm against the type II error. 

. Conclusion 

In this work, a novel classification method for MCI detection

ased on DWI data has been proposed. The method is based on

nsembling neural network models fed with different graph mea-

ures. These measures can provide non-overlapping information on

he same graphs under study, so the ensemble can benefit from

his diversification. The proposed method exhibited good sensitiv-

ty either when using unbalanced or balanced groups. In fact, in

his paper we have also shown the detrimental effects on classi-

cation performance when the pathological and the control group

re equally represented. 

Future works should attempt to identify the brain regions the

onnectivity of which is more related to the cognitive decline due

o MCI. To this end, a feature importance analysis, based on the

earning algorithm itself, could be done. 
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